

POLITECNICO **DI TORINO**

17 LUGLIO 2020 ENTRA NEL FUTURO

EV Fast-Charging Stations: a Boost for Power System Stability?

F. Mandrile, D. Cittanti, M. Gregorio and R. Bojoi **Power Electronics Innovation Center,** Politecnico di Torino

INDICE

Fast Chargers Integration: challenges and opportunities

Virtual Synchronous Generators (VSGs)

VSGs as a solution

Conclusion

Electric Vehicle Ultra-Fast Charging

The missing link to EV widespread adoption

Li-ion batteries \Rightarrow bottleneck for EV driving range and cost

Ultra-fast charging as a key solution for reducing average battery pack size (cost) and range anxiety

Thousands of DC charging stations are being installed worldwide, but...

...without considering the impact on the grid!

 \approx 100 European households!

What does the Grid Need?

The key aspects of **power quality**

1) Stable frequency (e.g. 50 Hz)

Low harmonic distortion

High short circuit currents, to trigger protections

Source: J. Fang et al., "On the Inertia of Future More-Electronics Power Systems," in *IEEE Journal of Emerging* and Selected Topics in Power Electronics, vol. 7, no. 4, pp. 2130-2146, Dec. 2019.

The EV Charging Opportunity Challenges and opportunities of future *multi-MW* charging stations

 $(\mathbf{\dot{c}})$

The Virtual Synchronous Generator (VSG)

Controller for grid-side converter

VSG: Ancillary Services

(1)

Disconnection of a major generator (severe grid frequency drop)

Voltage regulation through 2) *reactive power* (**Q**) *support*

VSG: Ancillary Services

4

Short circuit current injection during grid faults, to trigger protection relays

Conclusions

- peak power **demand charges** for the station operator
- peak power demand at the same time
- add-on) to control future charging stations, as it directly provides:
 - Frequency regulation (active power injection), by virtual inertia
 - Voltage regulation (reactive power support)
 - Harmonic compensation
 - Short circuit current injection (to trigger protection relays)

The provision of ancillary services can translate in extra revenue for the charging station operator

Conventional EV fast charging stations cause a heavy strain on the utility, meanwhile generating high

Next-generation charging stations with integrated energy storage can support the grid and reduce

The Virtual Synchronous Generator (VSG) is a robust, effective and straightforward way (i.e. software

POLITECNICO DI TORINO

Contact: F. Mandrile +39 011 0907105

