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➢ The Electric System is going through a revolutionary phase:

➢ Wind and solar interfaced with power electronics converters

Can the Electric System rely only on them?

• A growing production of 
energy from renewable 
sources is expected

• The distributed 
generation (DG) is 
increasingly widespread 

Source: IEA
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➢ The grid stability is strictly linked with the presence of the synchronous 
generators (SGs) of hydro/thermal power plants

➢ They can provide ancillaries services to the grid:

• Frequency regulation (inertia and frequency control)

• Reactive support (voltage regulation)

• Support during faults (injection of short circuit currents)

• Harmonics compensation
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➢ The decarbonization process will reduce even 
more the number of conventional generators

➢ Static converters do not embed SGs’ features 
and conventional control techniques are not 
suitable to solve this problem

➢ Many solutions were proposed in the 
literature, with a common goal: make static 
converters mimic synchronous generators

Virtual Synchronous
Generators
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➢ Bibliographical research and study of the VSG solutions proposed in the 
literature

➢ Realization of PLECS simulations for each VSG model

➢ C-code implementation of the discrete-time version of each solution

➢ Evaluation of each considered VSG model by means of experimental tests

➢ Comparison between the analysed VSG models
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➢ The analyzed VSG models 
available in the literature are:
• Synchronverter
• Osaka
• VISMA
• VISMA1
• VISMA2
• SPC
• VSYNC
• Kawasaki
• CVSM

Block Diagram
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➢ Experimental Setup

Main Data: ൝
𝑈 = 120 2 V
𝑆𝑁 = 15 kVA



Power Electronics Innovation Center - PEIC@PoliTO

Experimental Results

11/19

➢ List of Tests:

• Active and Reactive Power 
Reference Variation

• Frequency Transient

• Harmonic Distortion

• Short Circuit Fault
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➢ Active Power Reference Variation

VISMA

Complete emulation of SGs 
(7th order)

VISMA1

Slight overshoot

VISMA2

Damped response

Underdamped response

⇒
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➢ Reactive Power Reference Variation

Reactive Droop Control Disabled Reactive Droop Control Enabled

Time constant 
τ𝑒 = 1 s

Difference of voltage  ⇒ Reactive Droop Control

Synchronverter
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➢ Frequency Transient

SPC SG SPC Lead-Lag (LL)

Damping-Droop Coupling Damping-Droop Decoupling
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➢ Harmonic Distortion

SPC Kawasaki

Current references disabled

8.5 V

10.5 V 4 V4.5 V
Active filtering behaviour

Amplification 
of distortion

5% of 
5th Harmonic
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➢ Short Circuit Fault
Osaka

Transition at 2.48 s 

Transition at 4.37 s 

Voltage-Output⇒

Complex Current
Limitation System

⇒

Transition to
Current Control

Reactive 
Droop 

Control 
Disabled

Reactive 
Droop 

Control 
Enabled
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Model Active Power Reference 
Variation

Reactive Power 
Reference Variation

Frequency 
Transient

Harmonic
Distortion

Short Circuit 
Fault

Current
Limitation

Damping
Steady 

State Error
Steady State Error

Damping-Droop 
Decoupling

Filtering
Capability

Grid Supporting Simplicity

Synchronverter       

Osaka       

VISMA    -   

VISMA1       

VISMA2       

SPC SG       

SPC PI/LL       

VSYNC    -   

Kawasaki       

CVSM       
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➢ My contributions have been:

• Bibliographical research and study of VSG solutions available in literature

• Implementation and tuning of each VSG control algorithm by means of 
PLECS simulations

• Realisation of C-codes for the discrete-time version of each solution

• Adaptation of C-codes for dSPACE environment and the real setup

• Experimental testing of every VSG model by means of the setup
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