

Comparison of Models and Implementation of Virtual Synchronous Generators

Supervisor:

Prof. Radu Bojoi

Advisor:

Fabio Mandrile

Candidate: Vincenzo Mallemaci

Dipartimento Energia "Galileo Ferraris"

Politecnico di Torino, Italy

05/10/2020

Outline

- Introduction
- Goal of the Master Thesis
- Description of the Models
- Experimental Results
- Conclusions

Introduction

> The Electric System is going through a **revolutionary phase**:

- A growing production of energy from renewable sources is expected
- The distributed generation (DG) is increasingly widespread

IEA. All Rights Reserved

Coal
Gas
Oil
Nuclear
Hydro
Wind
Solar
Other renewables

Source: IEA

Wind and solar interfaced with power electronics converters

Can the Electric System rely only on them?

Introduction

- The grid stability is strictly linked with the presence of the synchronous generators (SGs) of hydro/thermal power plants
- > They can provide ancillaries services to the grid:
 - Frequency regulation (inertia and frequency control)
 - Reactive support (voltage regulation)
 - Support during faults (injection of short circuit currents)
 - Harmonics compensation

Introduction

- The decarbonization process will reduce even more the number of conventional generators
- Static converters do not embed SGs' features and conventional control techniques are not suitable to solve this problem
- Many solutions were proposed in the literature, with a common goal: make static converters mimic synchronous generators

Goal of the Master Thesis

- Bibliographical research and study of the VSG solutions proposed in the literature
- Realization of PLECS simulations for each VSG model
- > C-code implementation of the discrete-time version of each solution
- > Evaluation of each considered VSG model by means of **experimental tests**
- Comparison between the analysed VSG models

Description of the Models

- The analyzed VSG models available in the literature are:
 - Synchronverter
 - Osaka
 - VISMA
 - VISMA1
 - VISMA2
 - SPC
 - VSYNC
 - Kawasaki
 - CVSM

Description of the Models

Power Electronics Innovation Center - PEIC@PoliTO

Description of the Models

Experimental Setup

Active Power Reference Variation

12/19

Reactive Power Reference Variation

Synchronverter

Excitation

Power Electronics Innovation Center - PEIC@PoliTO

Voltage-Output ↓ Complex Current Limitation System ↓ Transition to Current Control

Short Circuit Fault

Model	Active Power Reference Variation		Reactive Power Reference Variation	Frequency Transient	Harmonic Distortion	Short Circuit Fault	Current Limitation
	Damping	Steady State Error	Steady State Error	Damping-Droop Decoupling	Filtering Capability	Grid Supporting	Simplicity
Synchronverter	\checkmark	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark
Osaka	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×
VISMA	×	\checkmark	\checkmark	-	×	\checkmark	\checkmark
VISMA1	\checkmark	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark
VISMA2	\checkmark	\checkmark	\checkmark	×	\checkmark	\checkmark	×
SPC SG	\checkmark	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark
SPC PI/LL	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
VSYNC	×	\checkmark	\checkmark	-	×	\checkmark	\checkmark
Kawasaki	×	\checkmark	×	\checkmark	×	\checkmark	\checkmark
CVSM	\checkmark	\checkmark	×	\checkmark	×	\checkmark	\checkmark

Conclusions

- My contributions have been:
 - **Bibliographical research** and study of VSG solutions available in literature
 - Implementation and tuning of each VSG control algorithm by means of PLECS simulations
 - **Realisation of C-codes** for the discrete-time version of each solution
 - Adaptation of C-codes for **dSPACE environment** and the real setup
 - Experimental testing of every VSG model by means of the setup

Thank you for your attention

Bibliography

- Synchronverter: M. Blau and G. Weiss, "Synchronverters used for damping inter-area oscillations in two-area power systems," *Renewable Energy and Power Quality Journal*, pp. 45-50, 04 2018.
- Osaka: K. Sakimoto, Y. Miura, and T. Ise, "Stabilization of a power system with a distributed generator by a virtual synchronous generator function," in 8th International Conference on Power Electronics - ECCE Asia, pp. 1498-1505, 2011.
- VISMA: R. Hesse, D. Turschner, and H.-P. Beck, "Micro grid stabilization using the virtual synchronous machine, (VISMA)," *Renewable energy & power quality journal*, vol. 1, pp. 676-681, 2009.
- VISMA1: Y. Chen, R. Hesse, D. Turschner, and H. Beck, "Improving the grid power quality using virtual synchronous machines," in 2011 International Conference on Power Engineering, Energy and Electrical Drives, pp. 1-6, 2011.
- VISMA2: Y. P. Chen, R. Hesse, D. Turschner, and H.-P. Beck, "Comparison of methods for implementing virtual synchronous machine on inverters," Renewable energy & power quality journal, pp. 734-739, 2012.
- SPC: W. Zhang, D. Remon, A. Mir, A. Luna, J. Rocabert, I. Candela, and P. Rodriguez, "Comparison of different power loop controllers for synchronous power controlled grid-interactive converters," in 2015 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 3780-3787,2015.
- VSYNC: M. P. N. van Wesenbeeck, S. W. H. de Haan, P. Varela, and K. Visscher, "Grid tied converter with virtual kinetic storage," in 2009 IEEE Bucharest PowerTech, pp. 1-7, 2009.
- Kawasaki: Y. Hirase, K. Abe, K. Sugimoto, and Y. Shindo, "A grid connected inverter with virtual synchronous generator model of algebraic type," IEEJ Transactions on Power and Energy, vol. 132, pp. 371-380, 01 2012.

CVSM: S. D'Arco, J. A. Suul, and O. B. Fosso, "Small-signal modeling and parametric sensitivity of a virtual synchronous machine in islanded operation," International Journal of Electrical Power & Energy Systems, vol. 72, pp. 3 - 15, 2015. The Special Issue for 18th Power Systems Computation Conference.

