

POLITECNICO DI TORINO Master Thesis in Electrical Engineering

syreDrive: a New Add-on to the Motor Design Framework for Automated Sensorless Control Simulation

Candidate: Dario Brunelli Supervisor:

prof. Gianmario Pellegrino

Advisors:

Anantaram Varatharajan

Simone Ferrari

1 December 2020

Presentation outline

- 1. Introduction and motivation
- 2. syreDrive description
- 3. Focus on position sensorless techniques
 - 1. Active fluxe or APP high-speed region.

low-speed region.

- 2. Sinusoidal or square wave injection
- 3. Current or flux demodulation
- 4. Selected results
- 5. Conclusion

Aim of the work

To develop an **automated procedure** to evaluate the performance of SyR motors through **auto-generated control simulations**, provided the parameters and the flux maps of the motor.

This work contributes to the open-source motor design platform *SyR-e*, in the form of the new add-on:

syreDrive.

SVIC <u>https://github.com/SyR-e</u>

<i>reDrive</i> flow ch	The work is integrated in a simple GUI	Input user control settings SVTC RUN button pressed
GUL_Syre_MMM Main dqtMap Scaling & Skewing Torque-Speed syret Control setups Control (ype Torque control Image: Control (model) Image: Control (model)	Ne SyR-e Magnetic Model Manipulation Load Save Clear all Syre/ New Save As Close all Syre/ Current path: D/syre/ Motor Type SR Motor Type SR Motor type SR Rated power 0 Q [M] Rated speed 0 DC link voltage 0 Maximum speed 1 Phase resistance 0 O/main Ciol Maximum area 1 Phase resistance 0 O/main Trom Maximum area 1 Phase resistance 0 O/main (rc) Active length 0	Simulation and control customization Function that prints the motor data header file MMM_print_MotorDataH() Simulation started Simulation started

Position sensorless control implemented

SyR motors under test

			Bari	Raw-P	Electro Adda	
Rated power	P_0	(kW)	1.1	4.4	2.2	
Rated torque	T_0	(N)	7.3	17	14	
Rated speed	n_0	(rpm)	1500	2500	1500	
Maximum speed	n_{max}	(rpm)	3000	6000	3000	
Rated current	i_0	(A)	3.0	15	7.0	
Maximum current	i_{max}	(A)	8.0	30	20	
Phase resistance	R_s	(Ω)	4.5	0.46	3.5	
DC-link voltage	V_{DC}	(V)	565	565	520	
Pole pairs	p	(-)	2	3	2	
Inertia	J	$kg\!\cdot\!m^2$	0.004	0.008	0.005	

Saliency analysis

No-load operation

From the incremental saliency maps it is evident the convenience of imposing a minimum *q*-current at no-load, rather than a *d*-current.

This makes the automatic selection of the minimum current easier.

A value equal to the 20% of the rated current is selected.

By doing so, a sufficient value of saliency ratio is achieved in all three cases employing the lowest value of current possible.

- The reference torque is ramped up from zero to $3T_0$.
- The speed is kept constant at 100 *rpm* to be certain to operate with the low-speed **saliency-based position estimation method**.

Electro Adda case:

The control loses the reference torque at $T = 1.76 \cdot T_0$. It corresponds to an incremental saliency ratio of 1.92. This value cannot be endured by the low-speed sensorless methods.

Selected results for the full-speed sensorles response

High-speed position error estimation method:

Adaptive Projection vector for
Position error estimation (APP)

Calibration optimization

syreDrive is meant to provide a first-approach calibration of the control. A further tuning of the parameters is left to the end user and can be easily achieved by changing the values in the *User_Constants.h* header file.

- > The default speed loop bandwidth is $2\pi \cdot 1 rad/s$.
- > By increasing it to $2\pi \cdot 1.8 \ rad/s$ the performance of the *RawP* motor improves.

Conclusion

- The **automatic generation** of the control delivered reliable results for all the three different-sized motors simulated
- Attention must be paid when operating at **no-load** and in **overload** with the full-speed sensorless control scheme.
- An **ad-hoc optimization** of the control performances is easily obtainable.

Future work perspectives:

- Examination of more SyR motors.
- Experimental tests for validation of the results obtained at simulation stage
- Insert additional control strategies selectable in the GUI

Dario Brunelli <u>s254272@studenti.polito.it</u>

