

E-Drives Modeling and Torque Control for Electrical Vehicles

Master's Degree in Mechatronic Engineering A.y. 2021/2022

Graduation Session October 2022

Supervisors:

Prof. Radu Bojoi

Dr. Luisa Tolosano

C Former

Dipartimento Energia "Galileo Ferraris"

Politecnico di Torino, Italy

Candidate:

Alessandro Ionta

Index

- General Overview
- Elements of the Control
- **E-Drive Modeling**
- Torque control Strategies for E-motors
- Simulation Results
- Conclusion

General Overview

E-Drives traction application issues:

- Highly non-linear motors
- Need for control in the high-speed range
- Need for control out of machine's nominal conditions (temperature variation)

State of art of torque control for traction application:

- LUT- based Field Oriented Control (FOC)
- Direct Torque Control (DTC)
- PoliTO solution: Direct Flux Vector Control (DFVC)

Usually non circuital, discrete-time average models are used for simulation of E-Drives

Tesla model 3

Polestar 3

Elements of the Control

E-Drives modeling

- Elements of the electric vehicle taken into account:
 - DC power source (considered as an ideal voltage source)
 - Power electronic converter
 - Synchronous motor
- Instataneous developed model vs mean value benchmark model

EV architecture

Control strategies

- Reference control: DFVC
- Developed control: 4D LUT-based FOC
- DFVC vs 4D LUT-based FOC

Objectives

Goals of the thesis:

- Set up a new circuital model of the e-Drive, valid for instantaneous simulation, compatible with both Simulink and PLECS environments
- Develop a Field Oriented Control technique with 4-dimensional Look-up Tables (LUTs) to be implemented in Matlab/Simulink using C-language: 4D LUT-based FOC
- The thesis is carried out in the context of a research collaboration between the **PEIC** interdepartmental center of Politecnico di Torino and the **Punch Torino** company

Power Electronic Converter

The converter chosen is a three-phase two levels inverter based on IGBT technology

Simscape

Electrical symbol for the IGBT block

Simscape \rightarrow Specialized Power System

Two-level converter block

View of the current of phase a in the inverter test

IPM Synchronous Motor

Internal Permanent Magnets (IPM) machine:

- Permanent magnets buried in the rotor surface
- Normally high torque density
- The rotor is anisotropic
- Both **PM and reluctance torque**: $T_{pm} \gg T_{rel}$

IPM synchronous motor

HSM1-10.18.13 (BRUSA)

Maximum torque production vs. speed at 400 V_{DC} and 25°C

E-Motor Modeling

The **modelling approach** considered for the e-Motor is the Voltage Behind Reactance (VBR) model

The VBR model represents the **motor** as an RLE load, with coupled inductors and controlled voltage generators imposing the back-EMF voltages computed by the motor model

VBR model

Flux-linkage maps of the IPM motor

Torque Control strategies for e-Motors

Example of e-Drive structure for development purposes

Pros:

- The flux weakening operation is performed without using any outer voltage regulator
- Decoupled control of stator flux amplitudes and torque-producing current
- Guarantees maximum torque production under inverter current and voltage constraints

Cons:

- Torque producing current controller on q_s-axis is affected by electric parameters sensitivity
- The d_s -axis position need to be estimated using an observer

DFVC control scheme

4D LUT-based FOC

Pros:

- Overcomes the issues due to machine electric parameters variation with temperature
- Enables the **control** of the machine in the **deep flux weakening region without instabilities**

Cons:

 Requires several 4D-LUTs to ensure the stable operation in all the possible working points

4D FOC control scheme

Simulation Results: Model Comparison

The VBR model developed is compared with a non-circuital, discrete-time average model used as the benchmark

Name	Symbol	Quantity	Unit
Motor			
Pole Pairs	рр	5	-
Stator Resistance	R_s	0,01	Ω
Stator Leakage Inductance	L _{ls}	0,003	Н
Maximum Torque	T_{max}	165	Nm
Inverter			
Switching Frequency	f_{sw}	12	kHz
Dead Time	t_{DT}	2	μs
DC-link voltage	v_{DC}	400	V

Motor and Inverter parameters

Zoom-in

Simulation Results: 4D LUT-based FOC vs DFVC

Conclusion

Personal contributions

- Development of simulation models using a circuital approach based on Simscape
- Realization of a valid alternative to the existent PoliTO DFVC found in the 4D LUTbased FOC, satisfactorily implemented in the C-language

Future developments

- The circuital characteristic of the e-Motor model developed represents a strong base for future work focused on the fault tolerance
- The 4D LUT-based FOC control scheme developed due to its simplicity, flexibility and reliability can be the starting point in the field of fault tolerant control strategies

Thanks for your attention!

