MODEL AND SIMULATION OF A PURE ELECTRIC BUS

Candidato: Daniele Palazzotto

Relatore universitario: Fabio Mandrile

Relatore aziendale: Maurizio Pichierri

Politecnico di Torino, Italy

27/03/2023

HITACHI Inspire the Next

HITACHI AND AMT OF GENOA

BUS ELETTRICI

000

ITTEN

2/16

- Due to the climate changes, a change of paradigm in the road transport sector is rapidly growing: the change from fossil fuels to electrical solutions.
- Hitachi and AMT of Genoa are working together in this revolution, using Irizar pure electric buses in the city environment, aiming to a significant emissions reduction.

MAIN QUESTIONS:

- Electric buses are sized for specific trips they are assigned for. If a bus is used in different routes, is it still idoneous?
- Given a certain route, is it possible to **forecast the bus consumption** for planning pourposes?
- Which are the **most important factors** in the electric bus consumption inside cities? Is it possible to **smooth them out**?

SOLUTION PROPOSED:

• Predictive microscopic energetic and kinematic model

RESISTANCE MODEL

For the total resistance force the longitudinal 1-D model has been chosen, composed by:

- $F_{load} = F_a + F_A + F_r + F_{sl}$
- Inertial
- Aerodynamic
- Tire rolling
- Gradient

SIMULINK MODEL

POWER TRAIN MODEL CONTROL MODEL KINEMATIC OUTPUT [SpeedRef] [EM_Powel] [Motor_W] _ [Motor_W] Þ -[Accelerator] [Total_Distance SpeedRef out.Speed [EN_Efficiency] [Brake] [Speed] [T_blax] EM_Beking_Torque] Acceleration Accelentor 0.02 [NetResTonue] [Braie] [Speed] [SpeedRef] Longitudinal Drive [MotorWheels] finik Bus Curlis (600 saconda, Curli Acceleration 1-D T(u) AccelRef A.440 [Total_Distance] BATTERY MODEL [Acceleration] [Mass PATH PASSENGERS IDM Power [StatingSOC] [Aux] outSoC [Brake] ConvEtticiency [SocPerd] [T_Mo] (Massa) M_Pficiency] [Speed] at en Capacity -0 Ed. Baking_Brouk [SocPerd] [Passengers] out.kWhperkm BateshilaCharge **IDONEITY INDEX** [Total_Distance] AUXILIARY LOAD [StatingSOC] V [GodPett] \mathbb{X} Intern/Tempentu (MotorWheels) [Aug [NetRes Torque]

[Passengers]

PassengerCapacity

REGENERATIVE BRAKE

For respecting the safety limits and the battery life, regenerative brake ratio is not constant. The split between regenerative brake (saturated to the Max motor torque) and mechanical brake has been made by using the Fuzzy Logic Matlab Toolbox where the inputs in each step are:

- Speed [km/h];
- Brake pedal pressure [%];
- Current SOC [%].

REGENERATIVE BRAKE EFFECT IN NEW YORK BUS CYCLE 53.40

	Reg	gen	Not Regen					
Parameter	Value	Unit	Value	Unit				
Kwh/km	2.43		3.37					
Autonomy	77.74	km	56	km				
SOC Descharge	0.64	%	0.88	%				
Energy Used	2.304	kWh	3.17	kWh				

Using the regenerative brake saves more than 29% of energy. Regenerative brake is a fundamental part for optimizing the energy consumption.

KPI AGGREGATION AND IDONEITY INDEX

It quantifies the idoneity of a vehicle for a specific trip with a number comprised between 0 and 2:

- **0 0.8 Index**: the vehicle is not appropriate for the route and simulation is not reliable;
- **0.8 1.2 Index**: suitable for the route, but the simulation could contain uncertainties;
- **1.2 2 Index**: oversized for the route, errors in simulation can be neglected.

SUMO

Simulink speed profile can be determined by using SUMO (Simulation of Urban Mobility): a microscopic and continuous traffic simulator.

Input:

- Route map, stops, idle time;
- Traffic lights, drive style, traffic;
- Bus parameters.

Output:

- Speed profile;
- Time passed;
- Emissions.

Emissions	GWP
CO_2	1
NO_x	25-110
CO	1.6-1.8

10/16

IRIZAR BUS IN GENOA

The bus line 44 (Borgoratti – Piazza Rotonda) has 21 stops and travels from Dante/De Ferrari to Rotonda/Capolinea. It is totally provided by Irizar ebus. Their autonomy is around 220 km.

Genoa map provided by Google Earth with the bus line 44 roundtrip route.

CONTROL ACTION

	Aggressive drive	Moderate drive	Unit
Max Acceleration	1	0.7	m/s^2
Max Deceleration	1.5	1	m/s^2

- With lower pedal pressure the motor operates in more efficient working points and the regeneration ratio is higher.
- Mild drive style (figure at the bottom) requires significantly lower pedal actions.

DRIVE STYLE EFFECT IN LINEA 44 IN GENOA

	Agg	$\mathbf{ressive}$	N	Aild
Parameter	Value	Unit	Value	Unit
Idoneity	1.614		1.677	
Duration	2633	S	2843	s
Kwh/km	1.592		1.3468	
Autonomy (full charge)	126.63	km	140.33	km
Energy Used	9.56	kWh	(8.10)	kWh
Fuel Used	5.21	l	4.87	1
Emissions engine	76.10	kgCO2eq	71.38	kgCO2eq
Emissions electric	5.7	kgCO2eq	4.83	kgCO2eq
Emissions avoided	92.5	%	93.23	%

- Mild drive style leads to a delay of 210 seconds and an energy saving of 18.2%.
- Due to the lower acceleration, passengers comfort and security are improved.

TRAFFIC AND DRIVE STYLE EFFECT

	A	ggress	ive driv	e		54																								
	Low t	raffic	High	traffic	1		-	•																						
Parameter	Value	Unit	Value	Unit	7	53		Y																						
Idoneity	1.614		1.62]	52																								
Duration	2633	s	3350	s	1	52																								
kWh/km	1.592		1.717]	<u> </u>							1			Mary -														
Autonomy (full charge)	226.13	km	209.67	km]	C [9													-											
Energy Used	18.20	kWh	19.64	kWh	1	S 50																								
					_																									
		Mild	drive			49													1			~			ſ					
	Low t	raffic	High t	raffic																and -	-									
Parameter	Value	Unit	Value	Unit		48																								
Idoneity	(1.677)		(1.686)																											
Duration	2843	s	3691	s		47	Ţ	9	1	2 7	9	<u> </u>	0 [- 90	1	90	T V	1 0	9,	1 9	Ĺ	9	1	9)1	9	L A	. –	9	1
kWh/km	1.3668		1.537					14	29		22	8	116	130	145	155	100	203	217	232	261	275	290	304	319	333	348	377	391	406
Autonomy (full charge)	267.3	km	234.48	\mathbf{km}														Tim	e [s]											
Energy Used	15.43	kWh	17.6	kWh			Agg	gress	sive	_	- M	lod	erate	e —		Age	gres	sive	Higl	n trai	fic	_	<u> </u>	Мо	der	rate	Hig	n tra	affic	2

- Poor traffic optimization leads to an energy waste of 7.8% in aggressive drive and 14% in mild drive.
- Drive styles in the high traffic situation saves more than 11.7% of energy with a delay of 341 seconds,
- Drive styles in the low traffic the energy saving is of 16.20% with a delay of 210 seconds.
- By comparing the best situation (optimized traffic and mild drive style) and the worst one (aggressive drive style and poor traffic optimization) the energy saving is up to 27.5%.

AUXILIARY AND DRIVE STYLE EFFECT

	Aggressive drive style											
	Low		Med		High							
Parameter	Value	Unit	Value	Unit	Value	Unit						
Idoneity	1.62		1.59		1.55							
$\rm kWh/km$	1.652		1.837		2.194							
Auxiliaries contribution	18.2	%	20.1	%	22.23	%						
Autonomy	217.92	km	195.97	km	169	km						
Energy used	18.9	kWh	21	kWh	24.35	kWh						

	Moderate drive style											
	Low		Med		High							
Parameter	Value	Unit	Value	Unit	Value	Unit						
Idoneity	1.68		1.66		1.62							
kWh/km	1.416		1.567		1.82							
Auxiliaries contribution	22.53	%	25.3	%	28.37	%						
Autonomy	254.24	km	229.74	km	197.8	km						
Energy used	16.22	kWh	17.94	kWh	20.84	kWh						

Three tests conducted for each drive style with low traffic:

- **Low Aux:** $\Delta T = 5$ °C, occupation at 30%, 32 passengers
- Med Aux: $\Delta T = 20$ °C, occupation at 55%, 45 passengers
- **High Aux:** $\Delta T = 20$ °C, occupation at 80%, 65 passengers

Energy saving among important cases:

- Low/High Aux | Fixed aggressive drive: 32.80%;
- Low/High Aux | Fixed mild drive: 28.53%;
- Fixed High Aux | Aggressive/Mild drive: 20.55%

MY WORK IN SYNTHESIS

- Hitachi's question
- Input bus and route parameters
- SUMO MODEL for the route simulation
- MATLAB as a **bridge** between softwares
- SIMULINK for energetic results
- Output results
- Best decision for the specific situation

THESIS RESULTS

 Prediction: with this work, predictions regarding the bus consumption, route feasibility and travel time can be done without tests on field with quantitative precision

 Optimization of resources: selling extra energy, optimizing the number of buses and employing them with strategy, such as using partially descharged buses in high descendant routes

FUTURE POSSIBILITIES

• Drive style: drive style can affect driving speed and the powertrain efficiency. Presence of traffic lights can alter the time of travel

- Traffic: traffic increases the number of brake, acceleration and idle instances, leading to several delay
- Energy saving and schedule delays are deeply linked: more time required for the trip inevitably increases the auxiliary consumption

- Inclusion of smart cities control for optimizing the traffic flows and the traffic lights coordination
- Using real traffic data for simulating typical Genoa scenarios and already knowing how to behave
- Inclusion of genetic or dynamic algorithms for speed optimization and obtaining the best compromise between energy usage and time schedules

THANK YOU FOR YOUR ATTENTION

