Parallel Operation of Grid-Forming Power Inverters

Alessia Camboni

Supervisor Politecnico di Torino: Fabio Mandrile Supervisors KTH: Qianwen Xu, Mengfan Zhang Host Company: Imperix

Supervisors Imperix: Nicolas Cherix, Simon Strobl

Contents

- Introduction
- Method
- Parallel Operation of GFMIs

- Conclusion

• Droop Control Methods for mostly Inductive Lines • Droop Control Methods for mostly Resistive Lines

Introduction

Grid-Following Inverters (GFLIs)

- Voltage Sources
- Grid-Connected mode
- Standalone mode

• Current Sources • Synchronized to the grid • Grid-Connected mode

Introduction

Research Question

Control Techniques for parallel GFMIs without communication and in standalone mode, connected through inductive and resistive lines

Power-sharing and frequency variation for a load step

Focus

Parallel Operation of GFMIs

Droop Control Methods for mostly Inductive Lines

MOSTLY INDUCTIVE LINES

EXPERIMENTAL RESULTS

Droop Control Methods for mostly Inductive Lines

What if parallel inverters have different coefficients?

 $m_1 = 2m_2$

Droop Control Methods for mostly Inductive Lines

VIRTUAL SYNCHRONOUS GENERATOR (VSG)

Emulation of a virtual synchronous generator dynamics with a firstorder control

Erequency [Hz] 49.995 49.99 49.99

EXPERIMENTAL RESULTS Smaller frequency Larger τ_I derivative

Droop Control Methods for mostly Resistive Lines

MOSTLY RESISTIVE LINES

Conventional droop may cause oscillation in the system response possible **instability**

DECOUPLING METHODS

- and

- Active and reactive power coupling
 - $P \propto f_P(\Delta \omega, \Delta V)$ $Q \propto f_Q(\Delta \omega, \Delta V)$

Droop Control Methods for mostly Resistive Lines

VIRTUAL IMPEDANCE

Add a virtual voltage drop in the voltage reference to emulate a larger X/R ratio

- No additional components
- Not necessary to know line parameters

EXPERIMENTAL RESULTS

Active Power GFMI1 and GFMI2

Conclusion

	Inductive Line		
	Proportional Droop	VSG	Proportio Derivat Droop
Power-sharing			
Frequency derivative			
Damped response			
	Not suitable for grid-connection	Design o ord	f a second- er VSG

Conclusion Personal Contribution

Grid-Following Inverter

Grid-Forming Inverter

Droop Control Methods

- Literature review
- Design of the control parameters
- Simulations in Simulink
- Assembly of the experimental setup
- Experimental validation

Thank You For Your Attention

